K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2015

Vì a, b, c là 3 cạnh tam giác nên a, b, c >0 và a <b+c ; b< c+a, c < a+b

Dùng bđt với x, y > 0 ; x< y(  tức x/y < 1) ta có x /y < x +m < y+m :

ta có a>0 ; b+c>0 và a < b+c => a/ b+c < a +a/a+b+c = 2a/a+b+c

tương tự b/c+a < 2b/a+b+c ; c/a+b <2c/a+b+c

Cộng từng vế 3 bđt trên sẽ ra bn nhé.

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

6 tháng 1 2017

a=12 b=1 c=4

k đi

25 tháng 1 2018

Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :

Đặt x= mẫu thứ nhất (1)

       y=mẫu thứ hai (2)

        z=mẫu thứ ba (3)

Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.

Sau đó rút c= x+y/2(@@@)

Tương tự với (2) và (3), (1) và (2)

Ta có b=x+z/2(@@)... a=y+z/2(@)

Cộng vế với vế của (@), (@@), (@@@) ta có 

vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)

Đặt 1/2 ra sau đó tách các phân số ra như sau 

\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)

Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại 

27 tháng 1 2018

ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu

13 tháng 10 2016

Ta có

\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)

\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)

\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)

Nhân vế theo vế ta được

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)

Dấu = xảy ra khi a = b = c hay tam giác ABC đều

25 tháng 2 2020

Vì a, b,c là độ dài ba cạnh của một tam giác

=> \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}}\)(bđt)

=>\(\frac{a}{b}\)\(< \frac{a+m}{b+m}\)\(\left(\frac{a}{b}< 1;a,b,m>0\right)\)

=> \(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)

làm tương tự 2 cái còn lại

cộng vế đẳng thức trên ta đc :

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \)\(\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=>\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

=> đpcm

19 tháng 8 2016

Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\) , khi đó : \(\begin{cases}2a=y+z\\2b=x+z\\2c=x+y\end{cases}\)

Ta có : \(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)

                                                  \(\ge2+2+2=6\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)

30 tháng 8 2016

ta có \(\frac{a}{b+c}-1+\frac{b}{a+c}-1+\frac{c}{a+b}-1=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-3\)     vì a b c là cách cạnh của tam giác nên biểu thức trên >= 3                                                                           

2 tháng 8 2020

Đặt: 

x = a + c - b ; y = a + b - c ; z = b + c - a > 0 vì a; b ; c là độ dài 3 cạnh của 1 tam giác 

=> x + y + z = a + b + c 

=> a = \(\frac{x+y}{2}\); b = \(\frac{y+z}{2}\); c = \(\frac{x+z}{2}\)

=> 3a - b + c = 2 a + ( a - b + c ) =  ( x  + y ) + x = 2x + y 

Tương tự: 3b - c + a = 2y + z ; 3c - a + b =  x + 2z

Đưa về bài toán: Chứng minh: 

\(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)

<=> \(\frac{2x+2y}{2x+y}+\frac{2y+2z}{2y+z}+\frac{2z+2x}{2z+x}\ge4\)(1)

Ta có: VT = \(1+\frac{y}{2x+y}+1+\frac{z}{2y+z}+1+\frac{x}{2z+x}\)

\(=3+\left(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\right)\)

\(=3+\left(\frac{y^2}{2xy+y^2}+\frac{z^2}{2yz+z^2}+\frac{x^2}{2zx+x^2}\right)\)

\(\ge3+\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=3+1=4\)

=> (1) đúng 

=> Bất đẳng thức ban đầu đúng

Dấu "=" xảy ra <=> x = y = z <=>  a = b = c